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Abstract Surveying results from [5] and [6], we motivate and introduce the the-
ory behind formalizing rich interfaces for software and hardware compo-
nents. Rich interfaces specify the protocol aspects of component interac-
tion. Their formalization, called interface automata, permits a compiler
to check the compatibility of component interaction protocols. Interface
automata support incremental design and independent implementabil-
ity. Incremental design means that the compatibility checking of inter-
faces can proceed for partial system descriptions, without knowing the
interfaces of all components. Independent implementability means that
compatible interfaces can be refined separately, while still maintaining
compatibility.

Keywords: Software engineering, formal methods, component-based design.

Introduction

Interfaces play a central role in the component-based design of soft-
ware and hardware systems. We say that two or more components are
compatible if they work together properly. Good interface design is based
on two principles. First, an interface should expose enough information
about a component as to make it possible to predict if two or more com-
ponents are compatible by looking only at their interfaces. Second, an
interface should not expose more information about a component than
is required by the first principle.

The technical realization of these principles depends, of course, on
what it means for two or more components to “work together properly.”
A simple interpretation is offered by typed programming languages: a
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component that implements a function and a component that calls the
function are compatible if the function definition and the function call
agree on the number, order, and types of the parameters. We discuss
richer notions of compatibility, which specify in addition to type in-
formation, also protocol information about how a component must be
used. For example, the interface of a file server with the two methods
open-file and read-file may stipulate that the method read-file

must not be called before the method open-file has been called. Sym-
metrically, the interface of a client specifies the possible behaviors of the
client in terms of which orderings of open-file and read-file calls
may occur during its execution. Given such server and client interfaces,
a compiler can check statically if the server and the client fit together.

Interfaces that expose protocol information about component interac-
tion can be specified naturally in an automaton-based language [5]. In
this article, we give a tutorial introduction to such interface automata.

Interface Languages

We begin by introducing two requirements on interface languages. An
interface language should support incremental design and independent
implementability. With each interface language we present, we will verify
that both of these requirements are met.

Incremental design. A component is typically an open system, i.e.,
it has some free inputs, which are provided by other components. In-
cremental design is supported if we can check the compatibility of two
or more component interfaces without specifying interfaces for all com-
ponents, i.e., without closing the system. The unspecified component
interfaces may later be added one by one, as long as throughout the pro-
cess, the set of specified interfaces stays compatible. More precisely, the
property of incremental design requires that if the interfaces in a set F
(representing the complete, closed design) are compatible, then the in-
terfaces in every subset G ⊆ F (representing a partial, open design) are
compatible. This yields an existential interpretation of interface com-
patibility: the interfaces in an open set G of interfaces (i.e., a set with
free inputs) are compatible if there exists an interface E (representing
an environment that provides all free inputs to the interfaces in G) such
that the interfaces in the closed set G ∪ {E} (without free inputs) are
compatible.1

Incremental design suggests that we model compatibility as a symmet-
ric binary relation ∼ between interfaces, and composition as a binary
partial function || on interfaces. If two interfaces F and G are com-
patible, that is, F ∼ G, then F ||G is defined and denotes the resulting
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composite interface. Now the property of incremental design reads as
follows:

For all interfaces F , G, H, and I, if F ∼ G and H ∼ I and
F ||G ∼ H||I, then F ∼ H and G ∼ I and F ||H ∼ G||I.

This property ensures that the compatible components of a system can
be put together in any order.2

Independent implementability. Recall the first principle of inter-
face design, namely, that the information contained in interfaces should
suffice to check if two or more components are compatible. This principle
can be formalized as follows: if F and G are compatible interfaces, and
F ′ is a component that conforms to interface F , and G′ is a component
that conforms to interface G, then F ′ andG′ are compatible components,
and moreover, the composition F ′||G′ of the two components conforms to
the composite interface F ||G. We call this the property of independent
implementability, because it enables the outsourcing of the implementa-
tion of the components F ′ and G′ to two different vendors: as long as
the vendors conform to the provided interfaces F and G, respectively,
their products will fit together, even if the vendors do not communicate
with each other.

For simplicity, in this article we gloss over the differences between
interfaces and components, and express both in the same language; that
is, we consider components to be simply more detailed interfaces.3 For
this purpose, we use a refinement preorder between interfaces: if F � F ′,
then the interface F ′ refines the interface F . An interface may be refined
into an implementation in several steps. As the refinement relation is a
preorder, it is transitive. The property of independent implementability
reads as follows:

For all interfaces F , F ′, G, and G′, if F ∼ G and F � F ′

and G � G′, then F ′ ∼ G′ and F ||G � F ′||G′.

This property ensures that compatible interfaces can always be refined
separately.4

Assume/Guarantee Interfaces

We illustrate the properties of incremental design and independent
implementability through a simple, stateless interface language called
assume/guarantee (A/G, for short) interfaces [6]. Assume/guarantee in-
terfaces have input and output variables. An A/G interface puts a con-
straint on the environment through a predicate φI on its input variables:
the environment is expected to provide inputs that satisfy φI . In return,
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the interface communicates to the environment a constraint φO on its
output variables: it vouches to provide only outputs that satisfy φO. In
other words, the input assumption φI represents a precondition, and the
output guarantee φO a postcondition.

Definition 1 An A/G interface F = 〈XI , XO, φI , φO〉 consists of

two disjoint sets XI and XO of input and output variables;

a satisfiable predicate φI over XI called input assumption;

a satisfiable predicate φO over XO called output guarantee.

Note that input assumptions, like output guarantees, are required to
be satisfiable, not valid. An input assumption is satisfiable if it can be
met by some environment. Hence, for every A/G interface there is a
context in which it can be used. On the other hand, in general not all
environments will satisfy the input assumption; that is, the interface
puts a constraint on the environment.

Example 2 A division component with two inputs x and y, and an
output z, might have an A/G interface with the input assumption y 6= 0
and the output guarantee true (which is trivially satisfied by all output
values). The input assumption y 6= 0 ensures that the component is used
only in contexts that provide non-zero divisors.

In the following, when referring to the components of several inter-
faces, we use the interface name as subscript to identify ownership. For
example, the input assumption of an interface F is denoted by φI

F .

Compatibility and composition. We define the composition of
A/G interfaces in several steps. First, two A/G interfaces are syntacti-
cally composable if their output variables are disjoint. In general, some
outputs of one interface will provide inputs to the other interface, and
some inputs will remain free in the composition. Second, two A/G in-
terfaces F and G are semantically compatible if whenever one interface
provides inputs to the other interface, then the output guarantee of the
former implies the input assumption of the latter. Consider first the
closed case, that all inputs of F are outputs of G, and vice versa. Then
F and G are compatible if the closed formula

(∀XO
F ∪XO

G )(φO
F ∧ φO

G ⇒ φI
F ∧ φI

G) (ψ)

is true. In the open case, where some inputs of F and G are left free,
the formula (ψ) has free input variables. As discussed above, to support
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incremental design, the two interfaces F and G are compatible if they
can be used together in some context, i.e., if there is a environment
that makes (ψ) true by providing helpful input values. Thus, in the
open case, the A/G interfaces F and G are compatible if the formula
(ψ) is satisfiable. Then, the formula (ψ) is the input assumption of the
composite interface F ||G, because it encodes the weakest condition on
the environment of F ||G that makes F and G work together.

Definition 3 Two A/G interfaces F and G are composable if XO
F ∩

XO
G = ∅. Two A/G interfaces F and G are compatible, written F ∼ G,

if they are composable and the formula

(∀XO
F ∪XO

G )(φO
F ∧ φO

G ⇒ φI
F ∧ φI

G) (ψ)

is satisfiable. The composition F ||G of two compatible A/G interfaces
F and G is the A/G interface with

XI
F ||G = (XI

F ∪XI
G)\XO

F ||G;

XO
F ||G = XO

F ∪XO
G ;

φI
F ||G = ψ;

φO
F ||G = φO

F ∧ φO
G.

Note that the compatibility relation ∼ is symmetric.

Example 4 Let F be the A/G interface without input variables, the
single output variable x, and the output guarantee true. Let G be the
A/G interface with the two input variables x and y, the input assumption
x = 0 ⇒ y = 0, and no output variables. Then F and G are compatible,
because the formula

(∀x)(true ⇒ (x = 0 ⇒ y = 0))

simplifies to y = 0, which is satisfiable. Note that the predicate y = 0
expresses the weakest input assumption that the composite interface needs
to make in order to ensure that the input assumption x = 0 ⇒ y = 0
of G is satisfied. This is because F makes no guarantees about x; in
particular, it might provide outputs x that are 0, and it might provide
outputs x that are different from 0.

The composition F ||G has the input variable y, the input assumption
y = 0, the output variable x, and the output guarantee true.

The following theorem shows that the A/G interfaces support incre-
mental design.
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Theorem 5 For all A/G interfaces F , G, H, and I, if F ∼ G and
H ∼ I and F ||G ∼ H||I, then F ∼ H and G ∼ I and F ||H ∼ G||I.

Proof sketch. Note that from the premises of the theorem it follows
that (1) the four sets XO

F , XO
G , XO

H , and XO
I are pairwise disjoint; and

(2) the formula

(∀XO
F ∪XO

G ∪XO
H ∪XO

I )(φO
F ∧ φO

G ∧ φO
H ∧ φO

I ⇒ φI
F ∧ φI

G ∧ φI
H ∧ φI

I)

is satisfiable. To prove from this that, say, the formula

(∀XO
F ∪XO

H)(φO
F ∧ φO

H ⇒ φI
F ∧ φI

H)

is satisfiable, choose the values for the variables in X I
F ||H ∩XO

G||I so that

φO
G ∧ φO

I is true. 2

Refinement. Besides composition, the second operation on inter-
faces is refinement. Refinement between A/G interfaces is, like subtyp-
ing for function types, defined in an input/output contravariant fashion:
an implementation must accept all inputs that the specification accepts,
and it may produce only outputs that the specification allows. Hence,
to refine an A/G interface, the input assumption can be weakened, and
the output guarantee can be strengthened.

Definition 6 An A/G interface F ′ refines an A/G interface F , written
F � F ′, if

1. XI
F ⊆ XI

F ′ and XO
F ⊇ XO

F ′;

2. φI
F ⇒ φI

F ′ and φO
F ⇐ φO

F ′.

Refinement between A/G interfaces is a preorder (i.e., reflexive and
transitive). The following theorem shows that the A/G interfaces sup-
port independent implementability.

Theorem 7 For all A/G interfaces F , G, and F ′, if F ∼ G and F �
F ′, then F ′ ∼ G and F ||G � F ′||G.

Proof sketch. From XO
F ∩ XO

G = ∅ and XO
F ⊇ XO

F ′ , it follows that
XO

F ′ ∩XO
G = ∅. Choose values for the input variables in X I

F ||G so that

(∀XO
F ∪XO

G )(φO
F ∧ φO

G ⇒ φI
F ∧ φI

G).

From XI
F ⊆ XI

F ′ and XO
F ⊇ XO

F ′ , it follows that XI
F ||G ⊆ XI

F ′||G. Choose

arbitrary values for all variables not inX I
F ||G. Then φO

F ′∧φO
G ⇒ φI

F ′∧φI
G
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follows from φO
F ′ ⇒ φO

F and φO
F ∧ φO

G ⇒ φI
F ∧ φI

G and φI
F ⇒ φI

F ′ . This
proves that F ′ ∼ G. The proof that F ||G � F ′||G is straight-forward.
2

Note that the contravariant definition of refinement is needed for The-
orem 7 to hold, as input assumptions and output guarantees occur on
two different sides of the implication in the formula (ψ).

We have not fixed the types of variables, nor the theory in which input
assumptions or output guarantees are written. Checking the compatibil-
ity of A/G interfaces, and checking refinement between A/G interfaces,
requires a procedure that decides the satisfiability of universal formulas
in that theory. For example, if all variables are boolean, then the input
assumptions and output guarantees are quantifier-free boolean formulas.
In this case, compatibility checking requires the evaluation of ∃∀ boolean
formulas (namely, satisfiability checking of the universal formula (ψ)),
and refinement checking requires the evaluation of ∀ boolean formulas
(namely, validity checking of the two implications of Definition 6).

Automaton Interfaces

We now present the stateful interface language called interface au-
tomata [5]. An interface automaton is an edge-labeled digraph whose
vertices represent interface states, whose edges represent interface tran-
sitions, and whose labels represent action names. The actions are parti-
tioned into input, output, and internal actions. The internal actions are
“hidden”: they cannot be observed by the environment. The syntax of
interface automata is identical to the syntax of I/O automata [8], but
composition will be defined differently.

Definition 8 An interface automaton F = 〈Q, q0, AI , AO, AH , δ〉 con-
sists of

a finite set Q of states;

an initial state q0 ∈ Q;

three pairwise disjoint sets AI , AO, and AH of input, output, and
hidden actions;

a set δ ⊆ Q × A × Q of transitions, where A = AI ∪ AO ∪ AH is
the set of all actions.

We require that the automaton F be input-deterministic, that is, for all
states q, q′, q′′ ∈ Q and all input actions a ∈ AI , if (q, a, q′) ∈ δ and
(q, a, q′′) ∈ δ, then q′ = q′′.



8

failsend ok

6fail! nack?

trnsmt ack nack

0 1 2 3 4

5

trnsmt! trnsmt!

ack?ok!

nack?

ack?

send?

Figure 1. The interface automaton TryTwice.

send failok

ok?

send!

0 1

Figure 2. The interface automaton Client .

An action a ∈ A is enabled at a state q ∈ Q if there exists a state
q′ ∈ Q such that (q, a, q′) ∈ δ. Given a state q ∈ Q, we write AI(q) (resp.
AO(q); AH(q)) for the set of input (resp. output; hidden) actions that
are enabled at q. Unlike I/O automata, an interface automaton is not
required to be input-enabled; that is, we do not require that AI(q) = AI

for all states q ∈ Q. Rather, we use the set AI(q) to specify the input
actions that are accepted at state q; that is, an interface automaton
encodes the assumption that, when F is in state q, the environment
does not provide an input action that is not enabled at q.

Example 9 We model a software component that implements a message-
transmission service. The component has a method “send” for sending
messages. When this method is called, the component returns either
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“ok” or “fail.” To perform this service, the component relies on a com-
munication channel that provides the method “trnsmt” for transmitting
messages. The two possible return values are “ack,” which indicates a
successful transmission, and “nack,” which indicates a failure. When the
method “send” is called, the component tries to transmit the message,
and if the first transmission fails, it tries again. If both transmissions
fail, the component reports failure. The interface automaton modeling
this component is called TryTwice and shown in Figure 1.

The interface automaton TryTwice has the three input actions “send,”
“ack,” and “nack”; the three output actions “trnsmt,” “ok,” and “fail”;
and no hidden actions. It has seven states, with state 0 being initial
(marked by an arrow without source). On the transitions, we append
to the name of the action label the symbol “?” (resp. “!”; “;”) to in-
dicate that the transition is input (resp. output; hidden). Note how the
automaton expresses in a straight-forward manner the above informal
description of the message-passing service. The input “send” is accepted
only in state 0; that is, the component expects a client to send a second
message only after it has received an “ok” or “fail” response.

The interface automaton Client of Figure 2 shows a possible client of
the message-passing service. It has the input actions “ok” and “fail,”
the output action “send,” and again no hidden actions. This particular
client expects messages to be sent successfully, and makes no provisions
for handling failures: after calling the method “send,” it accepts the
return value “ok,” but does not accept the return value “fail.” The ex-
pectation that the return value is always “ok” is an assumption by the
component Client about its environment; that is, the component Client is
designed to be used only with message-transmission services that cannot
fail.

An interface automaton F is closed if it has no input and output
actions; that is, if AI = AO = ∅. Closed interface automata do not
interact with the environment.

An execution of the interface automaton F is a finite alternating se-
quence q0, a0, q1, a1, . . . , qn of states and actions such that (qi, ai, qi+1) ∈
δ for all 0 ≤ i < n. The execution is autonomous if all its actions are
output or hidden actions; that is, if ai ∈ AO ∪AH for all 0 ≤ i < n. Au-
tonomous executions do not depend on input actions. The execution is
invisible if all its actions are hidden; that is, if ai ∈ AH for all 0 ≤ i < n.
A state q′ ∈ Q is (autonomously; invisibly) reachable from a state q ∈ Q

if there exists an (autonomous; invisible) execution whose first state is q,
and whose last state is q′. The state q′ is reachable in F if q′ is reachable
from the initial state q0. In the definition of interface automata, it is
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not required that all states be reachable. However, one is generally not
interested in states that are not reachable, and they can be removed.

Compatibility and composition. We define the composition of
two interface automata only if their actions are disjoint, except that an
input action of one automaton may coincide with an output action of
the other automaton.

Definition 10 Two interface automata F and G are composable if

1. AH
F ∩AG = ∅ and AF ∩AH

G = ∅;

2. AI
F ∩AI

G = ∅;

3. AO
F ∩AO

G = ∅.

For two interface automata F and G, we let shared (F,G) = AF ∩
AG be the set of common actions. If F and G are composable, then
shared (F,G) = (AI

G ∩ AO
F ) ∪ (AO

F ∩ AI
G). We define the composition

of interface automata in stages, first defining the product automaton
F ⊗ G. The two automata synchronize on the actions in shared (F,G),
and asynchronously interleave all other actions. Shared actions become
hidden in the product.

Definition 11 For two composable interface automata F and G, the
product F ⊗G is the interface automaton with

QF⊗G = QF ×QG;

q0F⊗G = (q0
F , q

0
G);

AI
F⊗G = (AI

F ∪AI
G)\shared (F,G);

AO
F⊗G = (AO

F ∪AO
G)\shared (F,G);

AH
F⊗G = AH

F ∪AH
G ∪ shared (F,G);

((q, r), a, (q′, r′)) ∈ δF⊗G iff

a 6∈ shared (F,G) and (q, a, q′) ∈ δF and r = r′, or
a 6∈ shared (F,G) and q = q′ and (r, a, r′) ∈ δG, or
a ∈ shared (F,G) and (q, a, q′) ∈ δF and (r, a, r′) ∈ δG.

Let δI
F = {(q, a, q′) ∈ δ | a ∈ AI

F } denote the set of input transitions of
an interface automaton F , and let δO

F and δH
F be defined similarly as the

output and hidden transitions of F . Then according to the definition of
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nack?6

trnsmt ack nack

0 1 2 3 4

5

trnsmt! trnsmt!

ack?

nack?

ack?

ok;

send;

Figure 3. The product automaton TryTwice ⊗ Client .

product automata, each input transition of F ⊗G is an input transition
of either F or G; that is, ((q, r), a, (q ′, r′)) ∈ δI

F⊗G iff

(q, a, q′) ∈ δI
F and a 6∈ AO

G and r = r′; or
a 6∈ AO

F and q = q′ and (r, a, r′) ∈ δI
G.

Each output transitions of F ⊗G is an output transition of F or G; that
is, ((q, r), a, (q′, r′)) ∈ δO

F⊗G iff

(q, a, q′) ∈ δO
F and a 6∈ AI

G and r = r′; or
a 6∈ AI

F and q = q′ and (r, a, r′) ∈ δO
G .

Each hidden transition of F ⊗G is either an input transition of F that
is an output transition of G, or vice versa, or it is a hidden transition of
F or G; that is, ((q, r), a, (q′, r′)) ∈ δH

F⊗G iff

(q, a, q′) ∈ δI
F and (r, a, r′) ∈ δO

G ; or
(q, a, q′) ∈ δO

F and (r, a, r′) ∈ δI
G; or

(q, a, q′) ∈ δH
F and r = r′; or

q = q′ and (r, a, r′) ∈ δH
G .

Example 12 The product TryTwice ⊗Client of the interface automata
TryTwice and Client from Figures 1 and 2 is shown in Figure 3. Each
state of the product consists of a state of TryTwice together with a state
of Client. Only the reachable states of the product automaton are shown.
Each transition of the product is either a joint “send” transition, which
represents the call of the method “send” by Client, or a joint “ok” transi-
tion, which represents the termination of the method “send” with return
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trnsmt ack nack

0 1 2 3 4

5

trnsmt! trnsmt!

ack?

nack?

ack?

ok;

send;

Figure 4. The composite interface automaton TryTwice||Client .

value “ok,” or a transition of TryTwice calling the method “trnsmt” of
the (unspecified) communication channel, or a transition of TryTwice
receiving the return value “ack” or “nack” from the channel.

Consider the following sequence of events. The component Client calls
the method “send”; then TryTwice calls twice the method “trnsmt” and
receives twice the return value “nack,” indicating transmission failure.
This sequence of events brings us to state 6 of the product automa-
ton, which corresponds to state 6 of TryTwice and state 1 of Client.
In state 6, the component TryTwice tries to report failure by returning
“fail,” but not expecting failure, the component Client does not accept the
return value “fail” in state 1. Hence the product state 6 has no outgoing
edges; it is called an error state, because at product state 6, the compo-
nent TryTwice violates the assumption made by the component Client
about the inputs that Client receives.

This example illustrates that, as interface automata are not necessar-
ily input-enabled, in the product of two interface automata, one of the
automata may produce an output action that is in the input alphabet
of the other automaton, but is not accepted.

Definition 13 Given two composable interface automata F and G, a
product state (q, r) ∈ QF ×QG is an error state of the product automa-
ton F ⊗ G if there exists an action a ∈ shared (F,G) such that either
a ∈ AO

F (q) and a 6∈ AI
G(r), or a 6∈ AI

F (q) and a ∈ AO
G(r). We write

error (F,G) for the set of error states of the product automaton F ⊗G.

If the product F ⊗G contains no reachable error states, then the two
interface automata F and G satisfy each other’s input assumptions and
are thus compatible. On the other hand, if F ⊗G is closed and contains
a reachable error state, then F and G are incompatible. The interesting
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case arises when F ⊗G contains reachable error states, but is not closed.
The fact that a state in error (F,G) is reachable does not necessarily
indicate an incompatibility, because by providing appropriate inputs,
the environment of F ⊗ G may be able to ensure that no error state is
encountered in the product. We therefore define the set of incompatible
states of F ⊗G as those states from which no environment can prevent
that an error state may be entered. First, the error states of F ⊗ G

are incompatible. Second, all states from which a sequence of output or
hidden actions of F ⊗ G leads to an error state are also incompatible,
because the product automaton may choose to traverse that sequence in
every environment. On the other hand, if an error state is only reachable
via an input action, then a helpful environment can choose not to provide
that action, thus avoiding the error state.

Definition 14 Given two composable interface automata F and G, a
product state (q, r) ∈ QF × QG is a compatible state of the product
automaton F ⊗G if there exists no error state (q ′, r′) ∈ error (F,G) that
is autonomously reachable from (q, r). Two interface automata F and
G are compatible, written F ∼ G, if they are composable and the initial
state of the product automaton F ⊗G is compatible.

Note that the compatibility relation ∼ is symmetric.
If two composable interface automata F and G are compatible, then

there is an environment E such that

(1) E is composable with F ⊗G;
(2) (F ⊗G) ⊗E is closed;
(3) for all states ((q, r), s) ∈ (QF ×QG)×QE that are reach-

able in (F ⊗ G) ⊗ E, we have (q, r) 6∈ error (F,G) and
((q, r), s) 6∈ error (F ⊗G,E).

The third condition ensures that (3a) E prevents the error states of F⊗G
from being entered, and (3b) E accepts all outputs of F⊗G and does not
provide inputs that are not accepted by F ⊗G. An interface automaton
that satisfies the conditions (1)–(3) is called a legal environment for
F ⊗G. The existence of a legal environment shows that two compatible
interfaces can be used together in some context.

For compatible interface automata F and G, there is always a trivial
legal environment, which provides no inputs to F ⊗G. Formally, empty
closure of F and G is the interface automaton close(F,G) with

Qclose(F,G) = {0};

q0close(F,G) = 0;

AI
close(F,G) = AO

F⊗G;



14

AO
close(F,G) = AI

F⊗G;

AH
close(F,G) = ∅;

δclose(F,G) = {(0, a, 0) | a ∈ AI
close(F,G)}.

The empty closure close(F,G) has a single state (arbitrarily named 0),
which is its initial state. It accepts all output actions of F ⊗ G as
inputs, but does not issue any outputs. All states that are reachable in
(F ⊗G)⊗ close(F,G) are reachable solely by output and hidden actions
of F ⊗ G. Thus, if the initial state of F ⊗ G is compatible, then each
state that is reachable in (F ⊗G) ⊗ close(F,G) must not correspond to
an error state of F ⊗G. On the other hand, if the initial state of F ⊗G

is not compatible, then some error state of F ⊗Q is reachable in every
environment that does not constrain the outputs of F ⊗G, in particular,
in (F ⊗G) ⊗ close(F,G). Consequently, two interface automata F and
G are compatible iff for all states (q, r) ∈ QF ×QG such that ((q, r), 0)
is reachable in (F ⊗G) ⊗ close(F,G), we have (q, r) 6∈ error (F,G).

The composition of two compatible interface automata is obtained by
restricting the product of the two automata to the set of compatible
states.

Definition 15 Given two compatible interface automata F and G, the
composition F ||G is the interface automaton that results from the prod-
uct F ⊗G by removing all transitions (q, a, q ′) ∈ δF⊗G such that

1. q is a compatible state of the product F ⊗G;

2. a ∈ AI
F⊗G is an input action of the product;

3. q′ is not a compatible state of F ⊗G.

Example 16 In the product automaton TryTwice ⊗ Client from Fig-
ure 3, state 6 is an error state, and thus not compatible. However, the
product TryTwice ⊗ Client is not closed, because its environment —the
communication channel— provides “ack” and “nack” inputs. The en-
vironment that provides input “ack” (or no input at all) at the product
state 4 ensures that the error state 6 is not entered. Hence, the prod-
uct states 0, 1, 2, 3, 4, and 5 are compatible. Since the initial state 0
of the product is compatible, the two interface automata TryTwice and
Client are compatible. The result of removing from TryTwice⊗Client the
input transition to the incompatible state 6 is the interface automaton
TryTwice||Client shown in Figure 4.

Note that restricting TryTwice ⊗ Client to its compatible states cor-
responds to imposing an assumption on the environment, namely, that
calls to the method “send” never return twice in a row the value “nack.”
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Hence, when the two interface automata TryTwice and Client are com-
posed, the assumption of Client that no failures occur is translated into
the assumption of TryTwice||Client that no two consecutive transmis-
sions fail. The illustrates how the composition of the interface automata
TryTwice and Client propagates to the environment of TryTwice||Client
the assumptions that are necessary for the correct interaction of TryTwice
and Client.

The definition of composition removes only transitions, not states,
from the product automaton. The removal of transitions, however, may
render some states unreachable, which can then be removed also. In par-
ticular, as far as reachable states are concerned, the composition F ||G
results from the product F ⊗ G by removing all incompatible states; if
the result is empty, then F and G are not compatible. In general, the
removal of input transitions from a product automaton may render even
some compatible states unreachable. Hence, the relevant states of the
composite automaton F ||G are those states of the product automaton
F ⊗G which remain reachable after all incompatible states are removed.
Those states of the product automaton can be found in linear time, by
forward and backward traversals of the underlying graph [5]. Thus the
compatibility of two interface automata with m1 and m2 reachable tran-
sitions, respectively, can be checked, and their composition constructed,
in time O(m1 ·m2).

The following theorem shows that interface automata support incre-
mental design.

Theorem 17 For all interface automata F , G, H, and I, if F ∼ G and
H ∼ I and F ||G ∼ H||I, then F ∼ H and G ∼ I and F ||H ∼ G||I.

Proof sketch. For composability, note that from the premises of the
theorem it follows that AH

i is disjoint from Aj for all j 6= i, that all AI
i ’s

are pairwise disjoint, and that all AO
i ’s are pairwise disjoint. Consider

the product automaton F ⊗ G ⊗ H ⊗ I; the associativity of ⊗ implies
that parentheses do not matter. Define a state (p1, p2, p3, p4) to be an
error state of F ⊗ G ⊗ H ⊗ I if some pair (pi, pj) is an error state of
the corresponding subproduct; e.g., if (p1, p3) is an error state of F ⊗H.
Define a state p to be an incompatible state of F ⊗G ⊗H ⊗ I if some
error state of F ⊗G⊗H ⊗ I is autonomously reachable from p, that is,
reachable via hidden and output transitions. For ` ≥ 0, define a state
p to be a rank-` incompatible state if some error state is autonomously
reachable from p in at most ` transitions.

We show that under the premises of the theorem, the composition
F ||G||H||I is achieved, for any insertion of parentheses, by removing
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the incompatible states from the product F ⊗ G ⊗ H ⊗ I. The proof
proceeds in two steps. First, we show that if some projection of a product
state p = (p1, p2, p3, p4) is an incompatible state of the corresponding
subproduct (say, F ⊗ G), then p is an incompatible state of the full
product F⊗G⊗H⊗I. Second, we show that if p is an incompatible state
of F⊗G⊗H⊗I, and some input transitions are removed by constructing
the composition of any subproduct (say, F ||H), then even in the product
without the removed transitions, there remains an autonomous path
from p to an error state.

(1) Consider a state p of the product F⊗G⊗H⊗I, and a projection p′

of p which is a rank-` incompatible state of the corresponding subprod-
uct. We show that p is a rank-`′ incompatible state of F ⊗G ⊗H ⊗ I

for some `′ ≤ `. Consider a shortest autonomous path from p′ to an
error state in the subproduct. There are three cases. First, if p′ is an
error state of the subproduct (rank 0), then p is an error state of the
full product. Second, if the first transition of the error path from p′ in
the subproduct corresponds to an output or hidden transition of the full
product, then the rank of the successor state is `−1 and the claim follows
by induction. Third, if the first transition of the error path from p′ is
an output transition of the subproduct which does not have a matching
input transition in the full product, then p is an error state of the full
product and has rank 0.

(2) Consider an incompatible state p of the product F ⊗G ⊗H ⊗ I.
Suppose that some input transitions are removed by constructing the
composition of a subproduct, and remove the corresponding transitions
in the full product F ⊗G⊗H⊗I. The only kind of transition that might
be removed in this way is a hidden transition (q, a, r) of the product
whose projection onto the subproduct is an input transition (q ′, a, r′),
which is matched in the full product by an output transition. Once
(q, a, r) is removed, the input action a is no longer enabled at the state q ′,
because interface automata are input-deterministic. Hence in the full
product, the state q is an error state. Therefore even after the removal
of the transition (q, a, r) from the product F ⊗ G ⊗ H ⊗ I, there is an
autonomous path from p to an error state, namely, to q. 2

As a consequence of Theorem 17, we can check whether k > 0 inter-
face automata F1, . . . , Fk are compatible by computing their composition
F1|| · · · ||Fk incrementally, by adding one interface automaton at a time.
The potential efficiency of the incremental product construction lies in
the fact that product states can be pruned as soon as they become ei-
ther incompatible, or unreachable through the pruning of incompatible
states. Thus, in some cases the exponential explosion of states inherent
in a product construction may be avoided.
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Figure 5. The interface automaton OnceOrTwice .

Refinement. In the stateful input-enabled setting, refinement is
usually defined as trace containment or simulation; this ensures that all
output behaviors of the implementation are allowed by the specification.
However, such definitions are not appropriate in a non-input-enabled set-
ting, such as interface automata: if one were to require that the set of
accepted inputs of the implementation is a subset of the inputs allowed
by the specification, then the implementation would make stronger as-
sumptions about the environment, and could not be used in all contexts
in which the specification is used.

Example 18 Consider the interface automaton OnceOrTwice of Fig-
ure 5. This automaton represents a component that provides two ser-
vices: the first is the try-twice service “send” provided also by the au-
tomaton TryTwice of Figure 1; the second is a try-once-only service
“once” designed for messages that are useless when stale. Clearly, we
would like to define refinement so that OnceOrTwice is a refinement
of TryTwice, because the component OnceOrTwice implements all ser-
vices provided by the component TryTwice, and it is consistent with
TryTwice in their implementation. Hence, in all contexts in which
TryTwice is used, OnceOrTwice can be used instead. The language of
OnceOrTwice, however, is not contained in the language of TryTwice;
indeed, “once” is not even an action of TryTwice.

Therefore, for interface automata we define refinement in a contravari-
ant fashion: the implementation must accept more inputs, and provide
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fewer outputs, than the specification. For efficient checkability of re-
finement, we choose a contravariant refinement relation in the spirit of
simulation, rather than in the spirit of language containment. This leads
to the definition of refinement as alternating simulation [1]. Roughly, an
interface automaton F ′ refines an interface automaton F if each input
transition of F can be simulated by F ′, and each output transition of F ′

can be simulated by F . The precise definition must take into account
the hidden transitions of F and F ′.

The environment of an interface automaton F cannot see the hidden
transitions of F . Consequently, if F is at a state q, and state r is invisibly
reachable from q (by hidden actions only), then the environment cannot
distinguish between q and r. Given a state q ∈ Q, let ε-closure(q) be
the set of states that are invisibly reachable from q. The environment
must be able to accept all output actions in the set

obsAO(q) = {a ∈ AO | (∃r ∈ ε-closure(q))(a ∈ AO(r))}

of outputs that may follow after some sequence of hidden transitions
from q. Conversely, the environment can safely issue all input actions in
the set

obsAI(q) = {a ∈ AI | (∀r ∈ ε-closure(q))(a ∈ AI(r))}

of inputs that are accepted after all sequences of hidden transitions
from q. For an implementation state q ′ to refine a specification state q we
need to require that obsAI(q) ⊆ obsAI(q′) and obsAO(q) ⊇ obsAO(q′).
Alternating simulation propagates this requirement from q and q ′ to
their successor states.

To define alternating simulation formally, we use the following nota-
tion. Given a state q ∈ Q and an action a ∈ A of an interface automaton,
let post (q, a) = {r ∈ Q | (q, a, r) ∈ δ} be the set of a-successors of q.

Definition 19 Given two interface automata F and F ′, a binary rela-
tion � ⊆ QF × QF ′ is an alternating simulation by F of F ′ if q � q′

implies

1. for all input actions a ∈ AI(q) and states r ∈ post(q, a), there is a
state r′ ∈ post(q′, a) such that r � r′;

2. for all output actions a ∈ AO(q′) and states r′ ∈ post (q′, a), there
is a state p ∈ ε-closure(q) and a state r ∈ post(p, a) such that
r � r′;

3. for all hidden actions a ∈ AH(q′) and states r′ ∈ post(q′, a), there
is a state r ∈ ε-closure(q) such that r � r ′.
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Conditions (1) and (2) express the input/output duality between
states q � q′ in the alternating simulation relation: every input transi-
tion from q must be matched by an input transition from q ′, and every
output transition from q′ must be matched by a sequence of zero or more
hidden transitions from q followed by an output transition. Condition (3)
stipulates that every hidden transition from q ′ can be matched by a se-
quence of zero or more hidden transitions from q. In all three cases,
matching requires that the alternating-simulation relation is propagated
co-inductively. Since interface automata are input-deterministic, condi-
tion (1) can be rewritten as (1a) AI(q) ⊆ AI(q′) and (1b) for all input
transitions (q, a, r), (q′, a, r′) ∈ δI , we have r � r′. It can be checked that
if q � q′ for some alternating simulation �, then obsAI(q) ⊆ obsAI(q′)
and obsAO(q) ⊇ obsAO(q′).

Definition 20 An interface automaton F ′ refines an interface automa-
ton F , written F � F ′, if

1. AI
F ⊆ AI

F ′ and AO
F ⊇ AO

F ′ ;

2. there is an alternating simulation � by F of F ′ such that q0
F � q0F ′.

Note that unlike in standard simulation, the “typing” condition (1)
is contravariant on the input and output action sets. This captures a
simple kind of subclassing: if F � F ′, then the implementation F ′ is
able to provide more services than the specification F , but it must be
consistent with F on the shared services. Condition (2) relates the initial
states of the two automata.

Example 21 In the example of Figures 1 and 5, there is an alternating
simulation that relates q with q′ for all q ∈ {0, 1, 2, 3, 4, 5, 6}. Hence
OnceOrTwice refines TryTwice.

It can be shown that refinement relation between interface automata
is a preorder. Refinement can be checked in polynomial time. More
precisely, if F has n1 reachable states and m1 reachable transitions, and
F ′ has n2 reachable states and m2 reachable transitions, then it can be
checked in time O((m1 +m2) · (n1 + n2)) whether F � F ′ [1].

The following theorem shows that interface automata support inde-
pendent implementability: we can always replace an interface automaton
F with a more refined version F ′ such that F � F ′, provided that F and
F ′ are connected to the environment by the same inputs. The side con-
dition is due to the fact that if the environment were to provide inputs
for F ′ that are not provided for F , then it would be possible that new
incompatibilities arise in the processing of these inputs. For software
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components, independent implementability is a statement of subclass
polymorphism: we can always substitute a subclass for a superclass,
provided no new methods of the subclass are used.

Theorem 22 Consider three interface automata F , G, and F ′ such that
F and G are composable and shared (F ′, G) ⊆ shared (F,G). If F ∼ G

and F � F ′, then F ′ ∼ G and F ||G � F ′||G.

Proof sketch. The typing conditions are straight-forward to check.
Note in particular that shared (F ′, G) ⊆ shared (F,G) implies both AH

F ′ ∩
AG = ∅ and (AI

F ′\AI
F ) ∩AO

G = ∅.
To prove that F ′ ∼ G under the premises of the theorem, we show that

every autonomous path leading from the initial state to an error state of
F ′⊗G can be matched, transition by transition, by an autonomous path
leading from the initial state to an error state of F ⊗G. The interesting
case is that of an input transition of F ′ in the product F ′ ⊗ G, say on
action a. Since the path is autonomous, the input action a of F ′ must be
an output action of G, and because shared (F ′, G) ⊆ shared (F,G), the
action a must also be an input action of F . If a is not enabled in F , then
we have already hit an error state of F ⊗G; otherwise, there are unique
a-successors in both F and F ′, and the path matching can continue.

Finally, to prove that F ||G � F ′||G under the premises of the theo-
rem, consider an alternating simulation � by F of F ′ such that q0

F � q0F ′ .
Then an alternating simulation �′ by F ||G of F ′||G can be defined as
follows: let (p, r) �′ (p′, r′) iff (1) p � p′, (2) r = r′, and (3) (p, r) is not
an error state of F ⊗G. 2

The property of independent implementability implies that refinement
is compositional: in order to check if F ||G � F ′||G′, it suffices to check
both F � F ′ and G � G′. This observation allows the decomposition
of refinement proofs. Decomposition is particularly important in the
case of interface automata, where the efficiency of refinement checking
depends on the number of states.

Discussion

An interface automaton represents both assumptions about the envi-
ronment, and guarantees about the specified component. The environ-
ment assumptions are twofold: (1) each output transition incorporates
the assumption that the corresponding action is accepted by the envi-
ronment as input; and (2) each input action that is not accepted at
a state encodes the assumption that the environment does not provide
that input. The component guarantees correspond to possible sequences
and choices of input, output, and hidden actions, as usual. When two
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interface automata are composed, the composition operator || combines
not only the component guarantees, as is the case in other component
models, but also the environment assumptions.

Whenever two interface automata F and G are compatible, there
is a particularly simple legal environment, namely, the empty closure
close(F,G). This points to a limitation of interface automata: while the
environment assumption of an automaton can express which inputs may
occur, it cannot express which inputs must occur. Thus, the environ-
ment that provides no inputs is always the best environment for showing
compatibility. There are several ways of enriching interface automata to
specify inputs that must occur, among them, synchronicity [3,6], adding
fairness [4], or adding real-time constraints [7]. In these cases, no generic
best environment exists, and a legal environment must be derived as a
winning strategy in a two-player game. Recall that two interfaces F
and G are compatible iff the environment has a strategy to avoid in-
compatible states of the product F ⊗ G. In this game, player-1 is the
environment, which provides inputs to the product F ⊗G, and player-2
is the “team” {F,G} of interfaces, which choose internal transitions and
outputs of F ⊗ G. The game aspect of compatibility checking is illus-
trated by the following example of a stateful, synchronous extension of
assume/guarantee interfaces [3].

Example 23 Suppose that F and G are two generalized A/G interfaces,
which receive inputs and issue outputs in a sequence of rounds and may
change, in each round, their input assumptions and output guarantees.
The interface F has no inputs and the single output variable x; the
interface G has the two input variables x and y, and no outputs. In the
first round, the interface F either goes to state q0 and outputs x = 0, or
it goes to state q1 and outputs x 6= 0. Also in the first round, on input
y = 0 the interface G goes to state r0, and on input y 6= 0 it goes to
state r1. In the second round, in state q0 the interface F outputs x = 0,
and in state q1 it outputs x 6= 0, after which it goes back to the initial
state. Also the second round, in state r0 the interface G has the input
assumption x = 0, and in state r1 it has the input assumption x 6= 0.
After the second round, also G returns to its initial state and the process
repeats ad infinitum.

Note that the state q0 of interface F is compatible with the state r0

of interface G, and q1 is compatible with r1, but q0 is not compatible
with r1, and q1 is not compatible with r0. The environment provides
the input y to the interface G in every round. The environment can
avoid incompatibilities by copying, in each (odd) round, the value of x
into y. In this way the environment can ensure that F and G are always
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in compatible states. Hence the two interfaces F and G are compatible.
The helpful strategy of the environment can be synthesized as a winning
strategy of the two-player game “environment” versus “interfaces.” In
this simple example, it is a game with complete information, because at
all times the environment, by observing the output x of F , can deduce
the internal state of F .

In the presence of hidden transitions, interface languages must be
designed carefully. This is because if the state of an interface is not
visible to the environment, then a legal environment corresponds to a
winning strategy in a game with partial information. The derivation
of such strategies requires, in general, exponential time, by involving a
subset construction that considers all sets of possible interface states [9].
Any model with an exponential cost for binary composition, however, is
unlikely to be practical. This is why we have focused, in this article, on
the asynchronous case with hidden transitions, and elsewhere [3,6,7], on
more general, synchronous and real-time interfaces but without hidden
transitions. Another interesting direction is to investigate stronger but
more efficient compatibility checks, which consider only restricted sets of
strategies for the environment. Such checks would be conservative (i.e.,
sufficient but not necessary) yet might still achieve the desired properties
of incremental design and independent implementability.

Rich, stateful interfaces as games have been developed further in [2,
4]. In the former article, multiple instances of a component, such as a
recursive software module, may be active simultaneously. Compatibility
checking for the corresponding interface language is based on solving
push-down games. In the latter article, the notion of error state is gen-
eralized to handle resource constraints of a system: an error occurs if
two or more components simultaneously access or overuse a constrained
resource. Critical resources may include power, buffer capacity, or cost.
While the basic set-up of the game “environment” versus “interfaces”
remains the same, the objective function of the game changes and may
include quantitative aspects, such as minimizing resource use.
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Notes

1. It is important to emphasize the existential interpretation of the free inputs of in-
terfaces, because this deviates from the standard, universal interpretation of free inputs in
specifications [5]. While a specification of an open system is well-formed if it can be realized
for all input values, an interface is well-formed if it is compatible to some environment. In
other words, for interfaces, the environment is helpful, not adversarial.

2. We could formalize the property of incremental design, instead, as associativity of in-
terface composition [5]. We chose our formalization, because it does not require an explicit
notion of equality or equivalence between interfaces. Implicitly, according to our formaliza-
tion, two interfaces F and G are equivalent if they are compatible with same interfaces, that
is, if for all interfaces H, we have F ∼ H iff G ∼ H. It can be shown that if the property
of incremental design holds, then for all interfaces F , G, and H, if F ∼ G and F ||G ∼ H,
then G ∼ H and F ∼ G||H and the two interfaces (F ||G)||H and F ||(G||H) are equivalent
in the specified sense.

3. A discussion about interfaces versus components can be found in [6].

4. The property of independent implementability is a compositionality property [6]. It
should be noted that the “direction” of interface compositionality is top-down, from more
abstract to more refined interfaces: if F ∼ G and F � F ′ and G � G′, then F ′ ∼ G′. This
is in contrast to the bottom-up compositionality of many other formalisms: if F ′ ∼ G′ and
F ′ � F and G′ � G, then F ∼ G.
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